| Title of Unit | Unit 2 – The Ecliptic | Grade Level | 11 & 12 | |-----------------|-----------------------|-------------|---------| | Curriculum Area | Astronomy | Time Frame | 2 weeks | | Developed By | Shelly Gould Burgess | | | ## **Identify Desired Results (Stage 1)** ## **Content Standards** By the end of the unit, students will be able to... - 1. Distinguish between Earth's rotation and revolution. - 2. Explain what the ecliptic phenomenon is and why it occurs. - 3. Identify and recreate sun arcs for the summer and winter solstices and the equinoxes at various latitudes. - 4. Explain the reason for these sun arcs. - 5. Relate these sun arcs to climate. - 6. Identify perihelion and aphelion and relate these to the summer and winter solstices. Please scroll down to page 2. | Understandings | Essential Questions | | | |---|--|---|--| | Overarching Understanding | Overarching | Topical | | | Students will understand how and why the sun appears to move diurnally and annually from various latitudes. | What is the difference between
Earth's rotation and revolution? | What are the characteristics of Earth's rotation? What are the characteristics of Earth's revolution? | | | | What is the ecliptic phenomenon? | How does the sun's position in the sky change annually? | | | Related Misconceptions | | Why does the sun's position in the sky change | | | Many common misconceptions about solar motion will
be cleared up as a result of mastering this unit. | What are the solstices and equinoxes? | annually? What is the sun's position in the sky during the solstices and equinoxes at various latitudes? What is the alignment of the sun and Earth during the solstices and equinoxes? How does light intensity/directness vary annually with the equinoxes and solstices at various latitudes? How does light intensity/directness affect climate? How do perihelion and aphelion relate to the solstices? | | | Knowledge
Students will know | Skills Students will be able to | | |--|--|--| | About Earth's rotation and revolution. What the ecliptic phenomenon is and how/why it works. The alignment of Earth and Sun during the solstices and equinoxes. When perihelion and aphelion occur. | Identify and create diurnal sun arcs for the solstices and equinoxes at various latitudes. Identify and create diagrams showing the alignment of Earth and Sun during the solstices and equinoxes. View a sun arc in the planetarium and identify the approximate latitude and time of year during which that sun arc might occur. Relate the ecliptic phenomenon to climate. | | From: Wiggins, Grant and J. Mc Tighe. (1998). *Understanding by Design*, Association for Supervision and Curriculum Development ISBN # 0-87120-313-8 (ppk) ## Lesson 1 - I. Objectives: Students will be able to... - Distinguish between Earth's rotation and revolution. - Explain what the ecliptic phenomenon is and why it occurs. - II. Materials: Classroom set of computers with ActivStudio; planetarium - III. Procedure: - A. Hook ~ Inquiry Lab: In the planetarium show the sun at different times of the year while students note observations. - B. Discovery activity: Flipchart: Ecliptic Introductory Activity - C. Notes: pp. 1-7 - Use ABC grouping to break information into small "chunks". - Use domes and meridian diagram blanks to practice at strategic points. - IV. Evaluation: Performance on activities; quiz ## Lesson 2 - I. Objectives: Students will be able to... - Identify and recreate sun arcs for the summer and winter solstices and the equinoxes at various latitudes. - Explain the reason for these sun arcs. - Relate these sun arcs to climate. - Identify perihelion and aphelion and relate these to the summer and winter solstices. - II. Materials: Classroom set of computers with ActivStudio; planetarium - III. Procedure: - A. Homework: Podcast minutes 19 30 followed by quiz - B. Debrief podcast (notes pages pp. 8 28) - Small "chunks" breaks are built into the flipchart. - Use of domes and meridian diagrams are built into the flipchart. - C. Activity: The Sun's Path: Equinoxes and Solstices around the World - D. Lab activity (optional): In the planetarium (for darkness) Me and my Shadow - E. Activity: Equinoxes, Solstices, and the World Map - F. Activity: Solar Radiation throughout the Year - G. Homework: The Sun and The Seasons Graphic Organizer - IV. Evaluation: - A. Performance on activities - B. Quizzes - Cumulative Project: Unit 2 Outdoor Astronomy Lab - Unit Reading Assignment: Scanned reading document on student shared drive - Unit 2 Homework