

Quantity	Variable	Unit	Unit Symbol
Length	I, d, r, $\Delta \mathbf{x}$	meter	\mathbf{m}
Mass	\mathbf{m}	kilogram	$\mathbf{k g}$
Time	\mathbf{t}	second	\mathbf{s}
Energy	\mathbf{E}	Joule	\mathbf{J}
Power	\mathbf{P}	Watt	\mathbf{W}
Thermodynamic temperature	\mathbf{T}	kelvin	\mathbf{K}
Electric current	\mathbf{I}	ampere	\mathbf{A}
Electric charge	\mathbf{q}	Coulomb	\mathbf{C}
Electric potential (voltage)	$\mathbf{V ,} \Delta \mathbf{V}$	Volt	\mathbf{V}
Electric resistance	\mathbf{R}	Ohm	Ω
Force	\mathbf{F}	Newton	\mathbf{N}
Pressure	\mathbf{P}	pascal	Pa
Frequency	\mathbf{f}	Hertz	$\mathbf{H z}$
Angles/Angular Displacement	$\Delta \theta$	radian	rad

Kinematic Equations
$\Delta x=x_{f}-x_{0}$
If not accelerating:
$\mathrm{V}=\Delta \mathrm{x} / \mathrm{t}$
If accelerating:
$a=\Delta v / t=\left(v_{f}-v_{0}\right) / t$
$\Delta x=1 / 2\left(v_{0}+v_{f}\right) t$
$\Delta x=v_{0} t+1 / 2 a^{2}$
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{0}+\mathrm{at}$
$v_{f}{ }^{2}=v_{0}{ }^{2}+2 a \Delta x$
Free Fall
$\mathrm{g}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$
opposite

Dynamics Formulas
$F_{G}=\mathrm{mg}$
Flat surface: $F_{N}=-F_{G}=-m g$
Inclined surface: $F_{N}=-F_{G}(\cos \theta)=-m g(\cos \theta)$

$$
F_{s, \max }=\mu_{\mathrm{s}} F_{\mathrm{N}} \quad F_{k}=\mu_{\mathrm{k}} F_{\mathrm{N}} \quad F_{\text {elastic }}=-k \Delta x
$$

$F_{\text {net }}=m a$
Energy Formulas
$P E_{g}=m g h \quad K E=1 / 2 m^{2} \quad P E_{e}=1 / 2 k x^{2}$

$$
W=F \Delta x(\cos \theta)
$$

$W=\Delta P E_{g}+\Delta P E_{e}+\Delta K E$
$W=m g\left(h_{f}-h_{0}\right)+1 / 2 k\left(x f^{2}-x_{0}{ }^{2}\right)+1 / 2 m\left(v^{2}-v_{0}{ }^{2}\right)$
$P E_{g 0}+P E_{e, 0}+K E_{0}=P E_{g, f}+P E_{e, f}+K E_{f}$
$m g h_{0}+1 / 2 k x_{0}^{2}+1 / 2 m v_{0}^{2}=m g h_{f}+1 / 2 k x^{2}+1 / 2 m v_{f}^{2}$

$$
\text { Power }=\mathrm{E} / \mathrm{t}=\mathrm{w} / \mathrm{t}=\mathrm{Fv}
$$

Momentum Formulas

$p=m v \quad F t=\Delta p=m \Delta v$
$\mathbf{P}_{\text {total, intial }}=\mathbf{P}_{\text {total, final }}$
$\mathbf{m}_{\mathrm{a}} \mathbf{v a}_{\mathrm{a}, 0}+\mathbf{m}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}, 0}=\mathbf{m}_{\mathrm{a}} \mathbf{v a f}_{\mathrm{a}}+\mathbf{m}_{\mathrm{b}} V_{\mathrm{bf}}$
$K E_{\text {total, intial }}=1 / 2 m_{1} \mathbf{v}^{2}{ }_{1,0}+1 / 2 m_{2} \mathbf{V}^{2}{ }_{2,0}$
$K E_{\text {total, final }}=1 / 2 m_{1} \mathbf{v}^{\mathbf{2}, \mathrm{f}}+\mathbf{1 / 2} \mathrm{m}_{2} \mathbf{v}^{2} \mathbf{2 , f}$
$\%$ lost $=\left[\left(\mathrm{KE}_{\mathrm{f}}-\mathrm{KE} 0\right) / \mathrm{KE}_{0}\right] \times 100$

Electric Circuits

1 Ampere = 1 Coulomb/second 1 Volt = 1 Joule/Coulomb
$I=\mathrm{V} / \mathrm{R}$
Total Resistance:

is Series: $R_{\text {total }}=R_{1}+R_{2}+R_{3} \ldots$

* Parallel: ${ }^{1 / R t o t a l}=1 / R 1+1 / R 2+1 / R 3 \ldots$

Power $=I \times V=I^{2} R=V^{2} / R$

Zero Rules for Significant Figures

1. Zeros in the middle are significant.
$101=3$ significant figures
2. Zeros to the left are never significant.
$0.01=1$ significant figure
3. Zeros to the right are significant if there's a decimal after them.
4. $=2$ significant figures
5. Zeros to the right are significant if they are after a decimal.
$0.010=2$ significant figures
6. Zeros to the right are significant if they are included in the coefficient of a number in scientific notation.
$1.0 \times 10^{4}=2$ significant figures
